Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(2): 226-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857824

RESUMO

Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.


Assuntos
Nanoestruturas , Nanoestruturas/química , DNA/química , Movimento (Física) , RNA , Transcrição Gênica
2.
Nat Commun ; 13(1): 1690, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354803

RESUMO

Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.


Assuntos
Cianobactérias , Ficobilissomas , Cianobactérias/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Humanos , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Tilacoides/metabolismo
3.
Nat Commun ; 12(1): 6982, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848707

RESUMO

Phospholipids are the major components of the membrane in all type of cells and organelles. They also are critical for cell metabolism, signal transduction, the immune system and other critical cell functions. The biosynthesis of phospholipids is a complex multi-step process with high-energy intermediates. Several enzymes in different metabolic pathways are involved in the initial phospholipid synthesis and its subsequent conversion. While the "Kennedy pathway" is the main pathway in mammalian cells, in bacteria and lower eukaryotes the precursor CDP-DAG is used in the de novo pathway by CDP-DAG alcohol O-phosphatidyl transferases to synthetize the basic lipids. Here we present the high-resolution structures of phosphatidyl serine synthase from Methanocaldococcus jannaschii crystallized in four different states. Detailed structural and functional analysis of the different structures allowed us to identify the substrate binding site and show how CDP-DAG, serine and two essential metal ions are bound and oriented relative to each other. In close proximity to the substrate binding site, two anions were identified that appear to be highly important for the reaction. The structural findings were confirmed by functional activity assays and suggest a model for the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases, which synthetize the phospholipids essential for the cells.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Methanocaldococcus/enzimologia , Sítios de Ligação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cristalografia por Raios X , Cistina Difosfato , Escherichia coli , Lipídeos de Membrana/química , Fosfatidilserinas , Fosfolipídeos , Fosfotransferases , Transferases
4.
Protein Expr Purif ; 175: 105689, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698044

RESUMO

Lipopolysaccharides are central elements of the outer leaflet of the outer membrane of Gram-negative bacteria and as such, of cyanobacteria. In the past, the structural analysis of the system in proteobacteria like Escherichia coli has contributed to a deep understanding of the transport of lipopolysaccharides from plasma membrane to the outer membrane. While many components of the transport system are conserved between proteobacteria and cyanobacteria, the periplasmic LptC appears to be distinct. The cyanobacterial proteins are twice as long as the proteobacterial proteins or proteins from firmicutes. This prompted the question whether the structure of the cyanobacterial proteins is comparable the one of the proteobacterial proteins. To address this question, we expressed LptC from Anabaena sp. PCC 7120 in E. coli as truncated protein without the transmembrane segment. We purified the protein utilizing HIS-tag based affinity chromatography and polished the protein after removal of the tag by size exclusion chromatography. The purified recombinant protein was crystallized by the sitting-drop vapor diffusion technique and best crystals, despite being twinned, diffracted to a resolution of 2.6 Å.


Assuntos
Anabaena/genética , Expressão Gênica , Proteínas Periplásmicas , Cristalografia por Raios X , Proteínas Periplásmicas/biossíntese , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...